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1 Parameters and estimators

In Economics, we are often interested in learning about some characteristic of a population.

For example, we might want to know the average income of all households in the US. However,

it is usually impractical or impossible to collect data from the entire population. Instead, we

often collect a sample of data from the population and use it to estimate the characteristic

of interest.

We can define the income of all households in the US as a random variable X. The

average income of all households in the US is then the expected value of X, denoted by

µ = E[X]. Since we do not know the distribution of X, we do not know the value of µ.

However, we can collect a sample of data from the population, say x1, x2, . . . , xn, where

xi ∈ R is the income of household i. We can use this realized sample to estimate µ.

Before we observe the data, we can think of X1, X2, . . . , Xn as random variables, while

x1, x2, . . . , xn as their realizations. I will refer toX1, X2, . . . , Xn as the sample while x1, x2, . . . , xn

is the realized sample or sample of data. This distinction allows us to define estimators and

to study their properties.

Parameter: Numerical characteristic of a distribution of one or more random variables.

Examples: expected value µ, variance σ2 and lower quartile p25. Example with joint distri-

butions: Corr(X, Y ) or Cov(X, Y )

Estimator: Random variable that is a function of the sample (X1, . . . , Xn) and, when

applied to a realized sample, estimates an unknown parameter. Examples: X̄n for the

expected value µ and S2
n for the variance σ2.
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Estimate: Realization of an estimator given a realization of sample of data. It is a real

number function of the data x1, x2, . . . , xn. Examples: x̄n or s2n.

We often want to know if an estimator is a good estimator for a parameter. There are two

common properties that we can use to evaluate the quality of an estimator: unbiasedness

and consistency.

Unbiased Estimator: An estimator θ̃ is unbiased for the parameter θ if E[θ̃] = θ. Exam-

ple: E[X̄n] = µ

Intuitevely, imagine that we have B realized samples of size n from the population, where

B is a large number. We can compute the estimate θ̂b for each realized sample b = 1, 2, . . . , B.

If we take the average of all estimates, we get 1
B

∑B
b=1 θ̂b. If θ̂ is an unbiased estimator, then

this average will tend to be very close to the true parameter θ.

Consistent Estimator: An estimator θ̃ is consistent for the parameter θ if the distribution

of θ̃ converges to θ when the sample size goes to infinity. Example: Since E[X̄n] = µ and

Var(X̄n) =
σ2

n

n→∞−−−→ 0, then distribution of X̄n converges to µ

Intuitevely, as we collect more and more data, the estimate θ̂ will tend to be closer and

closer to the true parameter θ.

1.1 Common estimators

Estimator for the mean:

X̄n =
1

n

n∑
i=1

Xi

This is the most common estimator for the mean. It is unbiased and consistent.

Estimator for the variance

S2
n =

1

n− 1

n∑
i=1

(
Xi − X̄n

)2
This is the most common estimator for the variance. It is unbiased and consistent. Dividing

by n − 1 instead of n makes the estimator unbiased. Sometimes, we use the estimator
1
n

∑n
i=1

(
Xi − X̄n

)2
, which is biased but consistent.

Estimator for the covariance:

Ĉov(X, Y ) =
1

n− 1

n∑
i=1

(
Xi − X̄n

) (
Yi − Ȳn

)
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New estimators: A general method for constructing estimators in iid samples is to use

the sample correspondent of the definition of the parameter. For example, if θ = E[g(X)]

for some continuous function g, then we can use the estimator θ̃ = 1
n

∑n
i=1 g(Xi). One can

show that this estimator is consistent. This is the basis for the (biased) estimators of the

variance and the covariance.

1.2 Other important concepts

Standard Error: The standard error of an estimator θ̃ is the standard deviation of its

distribution, denoted by SE(θ̃) =
√
Var(θ̃). The standard error measures the variability of

the estimator across different samples. A smaller standard error indicates that the estimator

is more precise.

Independence: Two random variables X and Y are independent if the occurrence of one

does not affect the probability distribution of the other. In other words, knowing the value

of X does not provide any information about the value of Y , and vice versa. Formally, X

and Y are independent if for all x and y, P (X ≤ x, Y ≤ y) = P (X ≤ x)P (Y ≤ y).

Random Sample: A random sample is a set of observations drawn from a population

such that each observation is independent and identically distributed (i.i.d.) according to

the same probability distribution as the population.

2 Central Limit Theorem

Suppose we have a random sample X1, . . . , Xn. The Central Limit Theorem (CLT) states

that, for a large enough sample size n, the distribution of the sample mean X̄n will be

approximately normal, regardless of the distribution of the original random variable X.

More formally, if X1, X2, . . . , Xn are i.i.d. random variables with mean µ and finite variance

σ2, then:
X̄n − µ

σ/
√
n

d−→ N(0, 1)

as n → ∞.

This means that, for large n, we can use the normal distribution to approximate the

distribution of the sample mean. This is very useful because we can use the properties of

the normal distribution to know how much uncertainty there is in our estimator and test if

we have statistical evidence to reject some assertions about the data.
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2.1 How large is large enough?

Not in the exam There is no hard and fast rule for how large n needs to be for the approx-

imation provided by the CLT to be accurate. If the distribution of X has finite support,

a small sample size is enough to give good approximations, like n = 50. If X has infinite

support and its distribution is heavily skewed or has heavy tails, a larger sample size may

be needed for the CLT to provide a good approximation. We can estimate the skewness and

the kurtosis to check how far the distribution is from a normal distribution. Sometimes, we

might want to use a transformation of the data to make it more normal-like before applying

the CLT.

2.2 Beyond the mean

Not in the exam The CLT can be extended to other statistics beyond the sample mean by

using properties of independence, properties of the normal distribution, continuous mapping

theorem and the Delta Method. For example, we can use the CLT to derive the asymptotic

distribution of the sample variance S2
n by defining Yi = (Xi − µ)2 and applying the CLT to

the sample mean of Yi.

We can also use the CLT to derive the asymptotic distribution of the sample correlation

Ĉorr(X, Y ) by applying the continuous mapping theorem and the Delta Method to the joint

distribution of X̄n, Ȳn, S
2
X and S2

Y .

3 Hypothesis Tests

A hypothesis test is a statistical method used to make affirmatives about the value of a

parameter based on a sample of data. Imagine that we want to know if the average income

of all households in the US is equal to $100,000. We can collect a sample of data from the

population and use it to test this hypothesis. Our estimate might be different from $100,000

just by random chance, so we need a way to determine if the difference is statistically

significant.

The basic idea is to formulate two competing hypotheses: the null hypothesis (H0 : µ =

$100, 000) and the alternative hypothesis (H1 ̸= $100, 000) and a level of significance α. The

level of significance is the risk the researcher is willing to take to reject the null hypothesis

when it is actually true. In Economics, we often use α = 0.05, but when an enginner is

testing if the probability of a bridge falling is greater than a given threshold, they might use

α = 0.001.
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Using the CLT, we can find a statistic for which the distribution is known under the null

hypothesis and then compute the value of this statistic using our sample of data. If the value

of the statistic is very unlikely under the null hypothesis, we have evidence against the null

hypothesis and in favor of the alternative hypothesis. The threshold for what is considered

”very unlikely” is determined by the level of significance α.

3.1 Example: Testing the mean

We want to test H0 : µ = µ0 = $100, 000 vs H1 : µ ̸= $100, 000 at level of significance

α = 0.05. We collect a sample of size n = 100 and compute the sample mean x̄n = $105, 000

and the sample standard deviation sn = $10, 000. The theory gives us that, if H0 is true,

then:

T =
X̄n − µ0

Sn/
√
n

≈ N(0, 1)

Thus, we can compute the test statistic:

t =
x̄n − µ0

sn/
√
n

=
105, 000− 100, 000

10, 000/
√
100

=
15, 000

3, 000
= 5

Values close to 5 are very unlikely in a N(0, 1) distribution. That gives us evidence

against the null hypothesis. More formally, we can compute a critical value c such that

P (|Z| > c) = α, where Z ∼ N(0, 1). For α = 0.05, we have c ≈ 1.96. Since |t| = 5 > 1.96,

we reject the null hypothesis. In words, we have statistical evidence that the average income

of all households in the US is different from $100,000.

We can perform this test using the p-value approach as well. The p-value is the probability

of observing a test statistic as extreme or more extreme than the one observed, assuming

that the null hypothesis is true. In our example, we can compute the p-value as follows:

p-value = P (|Z| > |t|) = P (|Z| > 5)

where Z ∼ N(0, 1). Using a standard normal table or a statistical software, we find that the

p-value is very small (less than 0.0001). Since the p-value is less than the level of significance

α = 0.05, we reject the null hypothesis in favor of the alternative hypothesis.
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4 Confidence Intervals

A confidence interval is a range of values that is likely to contain the true value of a parameter

with a certain level of confidence. We can denote a confidence interval as (L,U), where L

is the lower bound and U is the upper bound. The level of confidence is denoted by 1− α,

where α is the level of significance used in hypothesis testing.

L and U are random variables that depend on the sample, so the confidence interval

is also a random variable. The confidence interval is constructed such that, if we were to

repeat the sampling process many times, a proportion 1−α of the confidence intervals would

contain the true parameter value.

P (L ≤ θ ≤ U) ≈ 1− α

where θ is the true parameter value. The approximation becomes exact as the sample

size n goes to infinity.

We can construct a confidence interval for the mean using the CLT. If X1, X2, . . . , Xn

are i.i.d. random variables with mean µ and variance σ2, then a (1− α) confidence interval

for µ is given by: (
X̄n − zα/2

Sn√
n
, X̄n + zα/2

Sn√
n

)
where zα/2 is the (1− α/2) quantile of the standard normal distribution.

4.1 Example: Confidence interval for the mean

We want to construct a 95% confidence interval for the mean income of all households in the

US. We collect a sample of size n = 100 and compute the sample mean x̄n = $105, 000 and

the sample standard deviation sn = $10, 000. Using the formula for the confidence interval,

we have:

[l, u] =

[
105, 000− 1.96

10, 000√
100

, 105, 000 + 1.96
10, 000√

100

]
(1)

= [105, 000− 1.96× 1, 000, 105, 000 + 1.96× 1, 000] (2)

= [105, 000− 1, 960, 105, 000 + 1, 960] (3)

= [103, 040, 106, 960] (4)

We can interpret this confidence interval as follows: we are 95% confident that the true

mean income of all households in the US is between $103,040 and $106,960. This means
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that if we were to repeat the sampling process many times and construct a 95% confidence

interval for each sample, approximately 95% of those intervals would contain the true mean

income.

To be clear, this does not mean that there is a 95% probability that the true mean

income is between $103,040 and $106,960. That probability is either one or zero, since the

true mean income is a fixed value. Instead, it means that the method we used to construct

the confidence interval has a 95% success rate in capturing the true mean income. The

interval [103, 040, 106, 960] can be one of the 5% of intervals that do not contain the true

mean income.

5 Monte Carlo Simulations

We often do not know the distribution of an estimator, since the distribution of the random

variable of interest, X, is unknown. However, to understand the properties of an estimator

θ̃, we can use Monte Carlo simulations. The idea is to simulate B samples from a known

distribution and compute the estimate θ̂ for each sample. We can then study the distribution

of the estimator across all samples.

5.1 Example: Monte Carlo simulation for the mean

Imagine we have a random variable X that follows an Exponential distribution with pa-

rameter λ = 1. The expected value of X is µ = 1/λ = 1. We want to estimate µ using

the sample mean X̄n. We can use a Monte Carlo simulation to calculate the distribution of

X̄n and verify it is an unbiased estimator for µ and that its distribution is approximately

normal for large n. If we increase n, we can also verify that the distribution of X̄n becomes

more concentrated around µ, which is the intuition behind the result that X̄n is a consistent

estimator for µ.

Pseudocode:

Set B = 1000

Set n = 100

Set lambda = 1

For b in 1 to B:

Simulate a sample of size n from an Exponential dist. with parameter lambda

Compute the sample mean x_bar_b

Store x_bar_b in a vector x_bar
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Compute the average of all x_bar

Plot the histogram of all x_bar

The unbiasedness of the sample mean can be verified by checking if the average of all

x bar is close to the true mean of the Exponential distribution, which is 1/λ = 1. The

consistency of the sample mean can be verified by increasing n and checking if the variance

of all x bar decreases.
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6 Empirical Questions

These exercises were designed to help you understand the concepts covered in this week’s

notes and to start our study of R.

6.1 Question 1

Empirical verification of the CLT.

Consider the random variable X that follows an Exponential distribution with parameter

λ = 1. Run a Monte Carlo simulation with B = 1000 and n = 2 and calculate, for each

sample of data, the statistic X̄n−µ
σ/

√
n
. Plot the histogram of this statistic and overlay the

density of a N(0, 1) distribution. Repeat the exercise with n = 10 and n = 50. What do

you observe?

6.2 Question 2

Empirical verification of unbiasness and consistency of the sample variance.

Consider the random variable X that follows a Chi-squared distribution with 50 degrees

of freedom. The variance of this distribution is 100. Fix n. Run a Monte Carlo simulation

with B = 1000 and N = n and calculate, for each sample of data, the sample variance.

Calculate the difference between the average of all sample variances and the true variance of

X. Plot the histogram of the sample variances. Repeat the exercise with n = 10, 100, 1000.

What do you observe?

6.3 Question 3

Confidence Intervals for the mean.

Consider the random variable X that follows a Normal distribution with mean µ = 5

and variance σ2 = 4. Run a Monte Carlo simulation with B = 1000 and n = 100. For

each sample of data, compute the 90% confidence interval for the mean usind the sample

variance. Calculate the proportion of confidence intervals that contain the true mean µ = 5.

6.4 Question 4

Speed of convergence to a normal distribution.

Consider the random variables X, Y . X follows an Uniform distribution with support

[50, 100]. Y follows a Pareto distribution with parameter α = 2.01, such that µ = α
α−1

. Plot

the density of both distributions.
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Run a Monte Carlo simulation with B = 1000 and n = 10, 100, 1000. For each sample of

data, compute the statistic X̄n−µ
σ/

√
n
and Ȳn−µ

σ/
√
n
. Plot the histogram of both statistics and overlay

the density of a N(0, 1) distribution. What do you observe?

7 Theoretical Questions

7.1 Question 1

Suppose a warehouse has 64 machines that each take some time to complete a routine safety

check. Let Yi be the time (in minutes) it takes machine i to finish the check, and assume all

Yi are independent and identically distributed. Also assume that the mean of each Yi is 45

minutes and the standard deviation is 12 minutes.

(a) Let Ȳ be the average time it takes for the machines to finish their checks. What is the

probability that, on average, the checks take more than 47 minutes to complete? (Hint:

Use the approximation Ȳ ∼ N(E[Y ], Var(Y )/n) to obtain an approximate probability.)

(b) What is the probability that, on average, the checks take between 44 and 46 minutes?

(c) Look back at your answers to (a) and (b). Are these exact probabilities? Could you

compute exact probabilities with the information given? Justify your answer.

10



UCLA, Fall 2025 Econ 103

8 Solutions to Exercises

8.1 Question 1

Suppose a warehouse has 64 machines that each take some time to complete a routine safety

check. Let Yi be the time (in minutes) it takes machine i to finish the check, and assume all

Yi are independent and identically distributed. Also assume that the mean of each Yi is 45

minutes and the standard deviation is 12 minutes.

(a) Let Ȳ be the average time it takes for the machines to finish their checks. What is the

probability that, on average, the checks take more than 47 minutes to complete? (Hint:

Use the approximation Ȳ ∼ N(E[Y ], Var(Y )/n) to obtain an approximate probability.)

Solution: We have that E[Y ] = 45 and Var(Y ) = 122 = 144. Since we have n = 64

machines, we can use the CLT to approximate the distribution of Ȳ as follows:

Ȳ ∼ N

(
45,

144

64

)
= N(45, 2.25)

We want to find P (Ȳ > 47). We can standardize this probability using the properties

of the normal distribution:

P (Ȳ > 47) = P

(
Ȳ − 45√

2.25
>

47− 45√
2.25

)
= P

(
Z >

2

1.5

)
= P (Z > 1.33)

where Z ∼ N(0, 1). Using a standard normal table or a statistical software, we find

that P (Z > 1.33) ≈ 0.0918. Therefore, the probability that, on average, the checks

take more than 47 minutes to complete is approximately 0.0918.

(b) What is the probability that, on average, the checks take between 44 and 46 minutes?

Solution: We want to find P (44 < Ȳ < 46). We can standardize this probability
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using the properties of the normal distribution:

P (44 < Ȳ < 46) = P

(
44− 45√

2.25
<

Ȳ − 45√
2.25

<
46− 45√

2.25

)
= P

(
− 1

1.5
< Z <

1

1.5

)
= P (−0.67 < Z < 0.67)

where Z ∼ N(0, 1). Using a standard normal table or a statistical software, we find

that P (−0.67 < Z < 0.67) ≈ 0.496. Therefore, the probability that, on average, the

checks take between 44 and 46 minutes is approximately 0.496.

(c) Look back at your answers to (a) and (b). Are these exact probabilities? Could you

compute exact probabilities with the information given? Justify your answer.

Solution: These are not exact probabilities. We used the Central Limit Theorem

to approximate the distribution of Ȳ as a normal distribution. The CLT provides an

approximation that becomes more accurate as the sample size n increases. We can

not compute the exact probabilities with the information given, since we do not know

the exact distribution of the individual Yi. If we knew the exact distribution of Yi, we

could compute the exact distribution of Ȳ and thus the exact probabilities.
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